BHARATHIAR UNIVERSITY, COIMBATORE -641 046 B.Sc. CHEMISTRY - SCHEME OF EXAMINATIONS (CBCS PATTERN) (For the students admitted from the academic year 2016-2017 and onwards) | Study Components Course Title | (For the students admitted from the academic year 2016-2017 and onwards) | | | | | | | | |--|--|--|---------|------------|------|-------|-----|--------| | Semester I | Î | L Ourse Tille | | . S ~ | Exam | | | ್ವ | | Semester I | art | | | h. | < 4 | ·= | tal | edi | | Semester I | Ь | Components | | Ins
/ v | l D | S CL | To | Ü | | I Language-I | | | | - | | - | | | | Language- | \ | | | | 25 | 75 | 100 | 1 | | III Core Chemistry Paper | | | | | | | | | | III Core Chemistry Practical - I 3 4 7 5 5 7 5 100 4 4 20 55 75 3 3 100 4 4 20 55 75 3 3 100 4 4 20 55 75 3 3 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 100 4 100 100 100 4 100 | | | | | | | | | | III Allied A - Paper I* (or) CMatha - I IAA. | | | _13A_ | | | | 100 | | | National Paper ** | | | | | | | 100 | | | Paper Pape | 111 | Allied A - Paper I* (or) (Maty - I) | ۱۸۸. | | | | | 1 | | TFA 2 | | Paper I ** | 17705 | | | .55 | | | | Semester II | | | | | | - | W-1 | | | Language-II | IV | | "IFA. | - 2 | - | 50 | 50 | . 2 | | II English-II | | | | | | | 100 | | | III | | | | | | | | | | III Core III Chemistry Practical | | | 22 E | | | | | 100000 | | III Allied A - Paper II* (or) Paper II* | | | 23 A | 7 | 25_ | 75 | 100 | 4 | | III Allied A - Paper II* (or) Paper II* 2AA 6 25 75 100 4 4 20 55 75 3 3 3 3 3 3 3 3 3 | III | | 22 P | 3 | 40 | 60 | 100 | 4 | | Paper II ** | | | 201 | | 1 | | | j.c | | III Allied Practical** 2 20 30 50 2 | III | Allied A - Paper II* (or) (1944 - 1) | 244 | | | | | | | IV Value Education - Human Rights # 2 F 3 2 - 50 50 2 | | 1 apor 11 | | | | | | | | Semester III | | | | | 20 | | | | | Language-III | IV | | 2.43 | 2 | - | 50 | 50 | 2 | | II English-III | | | | 5 12" | 1 1 | V 5 | 3 3 | | | III Core IV - Chemistry Paper III 33A 3 25 75 100 4 III Core V - Chemistry Paper IV 33B 3 25 75 100 4 III Core Practical II 2 | | | 317 | | | | 100 | | | III | | | 32E | | | | 100 | | | III Core Practical II 2 | III | | 334 | | | | 100 | 4 | | Allied B - Paper I* (or) | III | | 33 B | | 25 | 75 | 100 | 4 | | Paper I** | III | Core Practical II | | | | , · - | - | - | | III Allied Practical** 2 - - - - IV Skill Based Subject Chemistry of natural and synthetic fibers 3 = A 2 20 55 75 3 IV Tamil @/Advanced Tamil # (Or) Non-Major Elective - I (yoga/women's rights #) 3 = C 2 - 50 50 2 Semester IV | III | | 244 | | 25 | | 100 | 4 | | Skill Based Subject Chemistry of natural and synthetic fibers 3=A 2 20 55 75 3 IV Tamil @/Advanced Tamil # (Or) Non-Major Elective - I (yoga/women's rights #) 3 = C 2 - 50 50 2 Semester IV | | Tupori | SAA | | 20 | 55 | 75 | 3 | | Chemistry of natural and synthetic fibers 2 20 55 75 3 | III | Allied Practical** | KSIK | 2 | - | - | - | - | | Chemistry of natural and synthetic fibers IV Tamil @/Advanced Tamil # (Or) Non-Major Elective - I (yoga/women's rights #) 3 F C 2 - 50 50 2 | IV | Skill Based Subject | 3ZA | 2 | 20 | 5.5 | 75 | 2 | | Non-Major Elective - I (yoga/women's rights #) 3FC 2 - 50 50 2 | | Chemistry of natural and synthetic fibers | | 2 | 20 | 22 | 13 | 3 | | Semester IV | IV | | 00 | | | 50 | 50 | 2 | | Language-IV | | Non-Major Elective - I (yoga/women's rights #) | 3FC | 2 | | 30 | 30 | 2 | | II English-IV | | Semester IV | 1 - 524 | | | • | | | | II English-IV | I | Language-IV | 417 | 6 | 25 | 75 | 100 | 4 | | III Core VI - Chemistry Paper V 43A 4 25 75 100 4 | II | English-IV | | | | | | | | III Core VII - Chemistry Practical II (Volumetric and Organic Analysis) A37 3 40 60 100 4 III Allied B - Paper II* (or) Physic/II A 6 25 75 100 4 Paper II** A 7 4 20 55 75 3 III Allied Practical** A 7 7 7 7 7 III Allied Practical** A 7 7 7 7 7 III Allied Practical** A 7 7 7 7 7 III Allied Practical** A 7 7 7 7 7 III Allied Practical** A Practic | III | Core VI – Chemistry Paper V | | | | | | | | (Volumetric and Organic Analysis) A3 P 3 40 60 100 4 | III | Core VII– Chemistry Practical II | | | | | | | | III Allied B - Paper II* (or) Physic/II) 4 6 25 75 100 4 | | (Volumetric and Organic Analysis) | 4312 | 3 | 40. | 60 | 100 | 4 | | Paper II** AMF 4 20 55 75 3 III Allied Practical** Physical 1 2 2 20 30 50 2 | | | 406 | 6 | 25 | 75 | 100 | 4 | | III Allied Practical** Physicy - II) 12 2 20 30 50 2 | | Paper II** | | | | | | | | | III | Allied Practical** Physic - 11) | APF | 2 | 20 | 30 | 50 | 2 | # **CORE IV - CHEMISTRY PAPER III** Teaching hours: 45 hours per semester (3 hours per week) **Subject description:** This paper presents the principle in the extraction of metals and mechanism of some important organic reactions. Goals: To enable the students to learn about the extraction principles and mechanism of some addition reaction. **Objectives:** To understand the mechanism and synthetic uses of important organic reactions. ### Course outcome: - To understand the extraction of metals. - 2. To gain the knowledge on the chemistry of carbonyl compounds. - 3. To understand the geometrical isomerism. - 4. To understand the metals and alloys. #### Unit - I General methods of Extraction: Concentration – Gravity separation, Froth Flotation, magnetic separation, Extraction – Chemical and Electrolytic methods of refining, Zone refining, Van Arkel refining and Electrolytic refining with examples. Occurrence, extraction, properties and uses of Germanium and Titanium - their important compounds such as GeCl₄ and TiO₂. ## Unit - II Chemistry of Carbonyl Compounds – I: Reaction mechanisms: Nucleophilic addition of Grignard reagent, NH₃, primary amine- Aldol condensation, Cannizzaro reaction, Perkin reaction, Knoevanagel reaction and Claisen- Schmidt reaction. # Unit-III Chemistry of Carbonyl Compounds – II Reaction mechanisms – Reformatsky reaction, benzoin condensation, Wurtz reaction, haloform reaction – Reaction with LiAlH₄ and NaBH₄ – Clemmensen reduction, Wolff Kishner reduction, MPV reduction – reducing properties of Carbonyl compounds. ### Unit - IV Malonic ester, acetoacetic ester and cyanoacetic ester-their preparation and synthetic applications. Tautomerism of acetoacetic ester. Geometrical isomerism – Cis & Trans, E & Z notations – Geometrical isomerism in maleic acid and fumaric acid - physical and chemical properties of geometrical isomers. ### Unit-V Structure of metals and alloys-substitutional and interstitial solid solution-Hume Rothery ratios-metallic bonding-electrical, optical and mechanical properties of metals-semiconductors, intrinsic and extrinsic-uses. Super conductors-An elementary treatment. ### Programme outcome: - Understood chemical and electrochemical principles involved in the extraction of metals. - 2. Gained the knowledge on the chemistry of carbonyl compounds - 3. Understood the geometrical isomerism. - 4. Understood the metals and alloys, substitutional and interstitial solid solution. # Text Books B.Sc .Chemistry- 2019-20 onwards – colleges Page **6** of 8 Annexure No:21 SCAA Dated: 09.05.2019 ## **UNIT V** C program for chemistry-Structure of C program, Variables in C, C Keywords and constants in C. Operators in C – Arithmetic, Increment, Decrement, relational and logical operators. Program: To calculate the pH of solutions— Calculation of pH of solution using Henderson equation—to compute the rate constant of a first order reaction—to compute the energy of activation of a reaction-Program to convert Fahrenheit to Celsius program-to calculate molecular weight of compounds (C_6H_6 , C_2H_5OH). # Programme outcome: - Acquired the knowledge of Thermodynamics. - Understood the surface phenomenon of solids i.e., adsorption and catalysis. - Understood the chromatography techniques. - Understood the chemistry in computer applications. # REFERENCES - Principles of physical chemistry, B.P.Puri, L.R.Sharma and M.S.Phathania, S.Chand & Company - Physical chemistry G,W.Castelan, Narosa Publishers. Physical chemistry (Vol.II) N.B.Singh, ShivasaranDas,A.K.Singh –New - International Publishers First edition(2009) 4. Introduction to Chromatography V.K.Srivatsava and K.K.Srivatsava S.Chand& - Company Second edition(1981) - Computer for Chemists By PundirBansal Pragati Prakasam Pubs. ### **CORE VI - CHEMISTRY PAPER V** Teaching hours: 60 Hours per semester (4 hours per week) **Subject description:** This paper presents the chemistry of few metals, phenols, amines and phase rule. Goals: To enable the students to learn about the reactions of phenol and amines. Objectives: To study the reaction of phenol and amines and applications of phase rule. #### **UNIT I** Occurrence, extraction, properties and uses of Zirconium, Vanadium, Molybdenum and Tungsten -their important compounds V₂O₅, ZrOCl₂, ammonium molybdate, molybdenum blue, WO₂, and tungsten bronzes. #### **UNIT II** Monohydric phenols - preparation & properties -Reaction of monohydric phenols with mechanism - alkylation, esterification, nitration, sulphonation, halogenation coupling with diazonium salts - Kolbe, Reimer - Tiemann, Schotten - Bauman and Gattermann reactions. #### **UNIT III** Amines- Preparation and properties of aliphatic and aromatic primary, secondary and tertiary amines – their separation, comparison of their basicity – ring substitution, diazotization and coupling reaction of aromatic amines. Diazomethane and diazoacetic ester – preparation, # CORE V - CHEMISTRY PAPER IV Teaching hours: 45 hours per semester (3 hours per week) **Subject description:** This paper presents the basic aspects of the second and third laws of thermodynamics, adsorption, chromatography and computer programming. **Goals:** To enable the students to understand the second and third laws of thermodynamics, catalysis, adsorption and the Computer C Programming. **Objectives:** To study the applications of computer programming in chemistry and the importance of mechanism of catalysis and thermodynamics, adsorption and chromatography. #### Course outcome: - To acquire the knowledge of Thermodynamics. - 2. To understand the surface phenomenon of solids i.e., adsorption and catalysis. - 3. To understand the chromatography techniques. - 4. To understand the chemistry in computer applications. #### UNIT - I Introduction to second law of thermodynamics – Carnot cycle – entropy – Definition – Entropy changes in isothermal transformation –Trouton's rule. Entropy as function of T and V – Entropy as a function of T and P – Changes of entropy with T, Entropy changes in ideal gas – entropy of mixing of ideal gases. #### **UNIT II** General conditions of equilibrium and spontaneity- conditions of equilibrium and spontaneity – definition of A and G – physical significance of dA and dG. Temperature and pressure dependence of G – Gibbs – Helmholtz equation. Chemical equilibrium – The concept of chemical potential – chemical potential in a mixture of ideal gases – Van't Hoff Isotherm, isobar and isochore – Third law of thermodynamics – statement and applications. Exception to third law. #### **UNIT III** Adsorption and Catalysis: Adsorption – types, differences between chemisorption and physisorption – Adsorption of Gases by solids – Adsorption isotherms – Freundlich, Langmuir isotherms-derivations – BET equation (Derivation not required) – Adsorption from solution – ion exchange adsorption-Types and applications – Techniques to determine the adsorbed molecules on solid surfaces. Catalysis – classification – differences between Homogeneous and Heterogeneous catalysis – Acid Base catalysis – Kinetics and Mechanisms – Autocatalysis – Enzyme catalysis-Characteristics and mechanism - Michaelis – Menton equation. # **UNIT IV** **Chromatography**: Chromatographic methods – Partition, Adsorption – Basic principles – Differential migration, adsorption phenomenon, nature of adsorbents, choice of solvents and R_I value – Techniques and applications of Paper, Column and TLC – Gas chromatography and HPLC (Basic principles only).